To design a map with the dimensions of the Peters-Map using the formula for equal-area cylindrical projections of an ellipsoid the reference data of the Peters-Map must be known.
The reference ellipsoid of Friedrich Wilhelm Bessel 1841 |
|||
semi-major axis | a | 6377,397155 km |
|
semi-minor axis | b | 6356,07896325 km |
|
flattening | f | (a - b) / a | 0,0033427731144651 |
1 / f | 299,152818859504 |
||
numeric eccentricity | e | SQRT(1 - (1- f)^2) | 0,081696830396505 |
The area of the ellipsoid zone
between the equator and 1° N Z = 4430108,29 km².
The area of the zone segment S = Z / 180 = 24611,71
km².
The length of the baseline B = SQRT(S) =
156,88120593
km.
The latitude of no distortion has the circumference U = Baseline * 180 =
28238,617067 km.
The radius of the latitude of no distortion r = U / 2 * Pi =
4494,315492 km.
The formula to compute the standard
parallel Phi0 is:
Transformation to the standard circle with r = 1
a1 = | 1 | |
b1 = | (1 / a) * b = | 0,99665723 |
r1 = | (1 / a) * r = | 0,70472567 |
Phi0 = Arctan(SQRT(1 - r1^2) / (b1 * r1 ))
The standard parallel for the Peters-Map with ellipsoid of Bessel 1841 is Phi0 = 45,288534° N/S.
The value k for equal-area cylindrical projection on an ellipsoid::
k = Cos(Phi0) / SQRT((1 - e^2 * Sin(Phi0)^2))
q = (1 - e^2) * (Sin(Phi) / (1 -
e^2 * Sin(Phi)^2) - (1 / (2 *
e)) * Log((1 - e
* Sin(Phi)) / (1 + e
* Sin(Phi))))
(Remark.: Log is the natural logarithms with the base e =
2.718281...)
this results in:
k at Phi0 = 45,288534° N/S | k = | 0,70472567 | |
q at Phi = 90° N | q90 = | 1,99554446 | |
y = a1 * q / 2 * k | Height of the map 1 * (2 * q90) / 2 * k | y = | 2,83166137 |
x = a1 * Lambda * k | Width of the map 1* 2 * Pi * k | x = | 4,42792198 |
The width-height ratio x / y | XY = | 1,56371875 |
For the table the following ellipsoid data have been used:
The example
ellipsoid based on the |
|||
semi-major axis | a | 1 |
|
semi-minor axis | b | 0,996657226818421 |
|
flattening | f | (a - b) / a | 0,0033427731144651 |
1 / f | 299,152818859504 |
||
numeric eccentricity | e | SQRT(1 - (1- f)^2) | 0,081696830396505 |
All areas of the ellipsoid zones have been computed using the formula which Prof. Walter Buchholz derived for Arno Peters.
Equal-area cylindrical projection of an ellipsoid with the standard parallel Phi0=45,288534° N/S) |
Arno Peters method of construction |
||||
k = 0,704725 | Baseline = SQRT(0,00060514) = 0,02459957 | ||||
phi (°) | q | y | Ellipsoid zone | Zone segment | Zone segment / Baseline |
0 | 0,000000 | 0,000000 | 0,000000 | 0,000000 | 0,000000 |
1 | 0,034672 | 0,024600 | 0,108925 | 0,000605 | 0,024600 |
2 | 0,069334 | 0,049192 | 0,217818 | 0,001210 | 0,049192 |
3 | 0,103975 | 0,073770 | 0,326646 | 0,001815 | 0,073770 |
4 | 0,138585 | 0,098325 | 0,435377 | 0,002419 | 0,098325 |
5 | 0,173154 | 0,122852 | 0,543979 | 0,003022 | 0,122852 |
6 | 0,207672 | 0,147342 | 0,652420 | 0,003625 | 0,147342 |
7 | 0,242128 | 0,171789 | 0,760667 | 0,004226 | 0,171789 |
8 | 0,276512 | 0,196184 | 0,868689 | 0,004826 | 0,196184 |
9 | 0,310815 | 0,220522 | 0,976453 | 0,005425 | 0,220522 |
10 | 0,345025 | 0,244794 | 1,083927 | 0,006022 | 0,244794 |
11 | 0,379132 | 0,268993 | 1,191079 | 0,006617 | 0,268993 |
12 | 0,413127 | 0,293112 | 1,297878 | 0,007210 | 0,293112 |
13 | 0,447000 | 0,317145 | 1,404292 | 0,007802 | 0,317145 |
14 | 0,480740 | 0,341083 | 1,510288 | 0,008390 | 0,341083 |
15 | 0,514337 | 0,364920 | 1,615836 | 0,008977 | 0,364920 |
16 | 0,547781 | 0,388648 | 1,720903 | 0,009561 | 0,388648 |
17 | 0,581062 | 0,412261 | 1,825459 | 0,010141 | 0,412261 |
18 | 0,614170 | 0,435751 | 1,929472 | 0,010719 | 0,435751 |
19 | 0,647096 | 0,459112 | 2,032911 | 0,011294 | 0,459112 |
20 | 0,679829 | 0,482336 | 2,135745 | 0,011865 | 0,482336 |
21 | 0,712359 | 0,505416 | 2,237943 | 0,012433 | 0,505416 |
22 | 0,744678 | 0,528346 | 2,339474 | 0,012997 | 0,528346 |
23 | 0,776774 | 0,551118 | 2,440308 | 0,013557 | 0,551118 |
24 | 0,808639 | 0,573726 | 2,540415 | 0,014113 | 0,573726 |
25 | 0,840263 | 0,596163 | 2,639764 | 0,014665 | 0,596163 |
26 | 0,871636 | 0,618422 | 2,738326 | 0,015213 | 0,618422 |
27 | 0,902749 | 0,640497 | 2,836070 | 0,015756 | 0,640497 |
28 | 0,933592 | 0,662380 | 2,932966 | 0,016294 | 0,662380 |
29 | 0,964156 | 0,684065 | 3,028987 | 0,016828 | 0,684065 |
30 | 0,994432 | 0,705546 | 3,124101 | 0,017356 | 0,705546 |
31 | 1,024411 | 0,726815 | 3,218281 | 0,017879 | 0,726815 |
32 | 1,054082 | 0,747867 | 3,311498 | 0,018397 | 0,747867 |
33 | 1,083439 | 0,768695 | 3,403722 | 0,018910 | 0,768695 |
34 | 1,112470 | 0,789293 | 3,494927 | 0,019416 | 0,789293 |
35 | 1,141168 | 0,809654 | 3,585084 | 0,019917 | 0,809654 |
36 | 1,169523 | 0,829772 | 3,674165 | 0,020412 | 0,829772 |
37 | 1,197528 | 0,849641 | 3,762144 | 0,020901 | 0,849641 |
38 | 1,225172 | 0,869255 | 3,848992 | 0,021383 | 0,869255 |
39 | 1,252449 | 0,888607 | 3,934683 | 0,021859 | 0,888607 |
40 | 1,279348 | 0,907692 | 4,019191 | 0,022329 | 0,907692 |
41 | 1,305863 | 0,926505 | 4,102490 | 0,022792 | 0,926505 |
42 | 1,331985 | 0,945038 | 4,184553 | 0,023248 | 0,945038 |
43 | 1,357705 | 0,963286 | 4,265356 | 0,023696 | 0,963286 |
44 | 1,383016 | 0,981244 | 4,344872 | 0,024138 | 0,981244 |
45 | 1,407909 | 0,998906 | 4,423078 | 0,024573 | 0,998906 |
46 | 1,432378 | 1,016266 | 4,499948 | 0,025000 | 1,016266 |
47 | 1,456414 | 1,033320 | 4,575459 | 0,025419 | 1,033320 |
48 | 1,480010 | 1,050061 | 4,649587 | 0,025831 | 1,050061 |
49 | 1,503158 | 1,066484 | 4,722309 | 0,026235 | 1,066484 |
50 | 1,525851 | 1,082585 | 4,793602 | 0,026631 | 1,082585 |
51 | 1,548082 | 1,098358 | 4,863444 | 0,027019 | 1,098358 |
52 | 1,569844 | 1,113798 | 4,931811 | 0,027399 | 1,113798 |
53 | 1,591130 | 1,128901 | 4,998684 | 0,027770 | 1,128901 |
54 | 1,611934 | 1,143661 | 5,064040 | 0,028134 | 1,143661 |
55 | 1,632248 | 1,158073 | 5,127858 | 0,028488 | 1,158073 |
56 | 1,652066 | 1,172134 | 5,190119 | 0,028834 | 1,172134 |
57 | 1,671383 | 1,185839 | 5,250803 | 0,029171 | 1,185839 |
58 | 1,690191 | 1,199183 | 5,309890 | 0,029499 | 1,199183 |
59 | 1,708484 | 1,212163 | 5,367362 | 0,029819 | 1,212163 |
60 | 1,726258 | 1,224773 | 5,423200 | 0,030129 | 1,224773 |
61 | 1,743506 | 1,237010 | 5,477385 | 0,030430 | 1,237010 |
62 | 1,760222 | 1,248871 | 5,529902 | 0,030722 | 1,248871 |
63 | 1,776402 | 1,260350 | 5,580732 | 0,031004 | 1,260350 |
64 | 1,792040 | 1,271445 | 5,629860 | 0,031277 | 1,271445 |
65 | 1,807131 | 1,282152 | 5,677269 | 0,031540 | 1,282152 |
66 | 1,821670 | 1,292467 | 5,722944 | 0,031794 | 1,292467 |
67 | 1,835652 | 1,302388 | 5,766871 | 0,032038 | 1,302388 |
68 | 1,849073 | 1,311910 | 5,809036 | 0,032272 | 1,311910 |
69 | 1,861929 | 1,321031 | 5,849424 | 0,032497 | 1,321031 |
70 | 1,874216 | 1,329748 | 5,888022 | 0,032711 | 1,329748 |
71 | 1,885928 | 1,338058 | 5,924818 | 0,032916 | 1,338058 |
72 | 1,897063 | 1,345959 | 5,959801 | 0,033110 | 1,345959 |
73 | 1,907618 | 1,353447 | 5,992958 | 0,033294 | 1,353447 |
74 | 1,917587 | 1,360520 | 6,024278 | 0,033468 | 1,360520 |
75 | 1,926969 | 1,367177 | 6,053752 | 0,033632 | 1,367177 |
76 | 1,935760 | 1,373414 | 6,081371 | 0,033785 | 1,373414 |
77 | 1,943958 | 1,379230 | 6,107123 | 0,033928 | 1,379230 |
78 | 1,951559 | 1,384623 | 6,131003 | 0,034061 | 1,384623 |
79 | 1,958561 | 1,389591 | 6,153001 | 0,034183 | 1,389591 |
80 | 1,964962 | 1,394133 | 6,173110 | 0,034295 | 1,394133 |
81 | 1,970760 | 1,398246 | 6,191324 | 0,034396 | 1,398246 |
82 | 1,975952 | 1,401930 | 6,207637 | 0,034487 | 1,401930 |
83 | 1,980538 | 1,405184 | 6,222044 | 0,034567 | 1,405184 |
84 | 1,984515 | 1,408006 | 6,234539 | 0,034636 | 1,408006 |
85 | 1,987883 | 1,410395 | 6,245119 | 0,034695 | 1,410395 |
86 | 1,990640 | 1,412351 | 6,253780 | 0,034743 | 1,412351 |
87 | 1,992785 | 1,413873 | 6,260519 | 0,034781 | 1,413873 |
88 | 1,994318 | 1,414960 | 6,265335 | 0,034807 | 1,414960 |
89 | 1,995238 | 1,415613 | 6,268224 | 0,034823 | 1,415613 |
90 | 1,995544 | 1,415831 | 6,269188 | 0,034829 | 1,415831 |
Width | 4,427922 | Width (180 * Baseline | 4,427922 | ||
Height | 2,831661 | Height | 2,831661 | ||
Ratio | 1,563719 | Ratio | 1,563719 |
From this table the following conclusion can be
made:
Using the formula for equal-area cylindrical projection of an ellipsoid with the
reference ellipsoid of Friedrich Wilhelm Bessel 1841 and the standard parallel
of 45,288534° N/S the result is the same as if Arno Peters method of
construction had been used. Both maps would be identical.
Please report all broken LINKS, thank you.
This is a private homepage with absolutely no commercial
intentions.
Copyright © Jürgen Heyn 2001, All rights reserved
Date of last amendment: 08. Februar 2003